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of the error between measured and reconstructed cross-sections is
lower than 2%.

A potential use of this method is to develop applications in
CAD/CAM. If no information is given on the location of the
revolution axis, then using a zoom lens can be an interesting approach.
But we can also think about an accurate modeling system with a
fixed camera and a devoted place to put the object. In this case the
revolution axis which remains fixed for all objects, is located during
the calibration step, and modeling the object of revolution amounts
to solve the inverse perspective problem of limb points projection.
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Symbolic Construction of Models for Multibody Dynamics

Harry G. Kwatny and Gilmer L. Blankenship

Abstract—New algorithms are presented for deriving joint kinematic
relations and these are integrated with Poincaré’s form of Lagrange’s
equations to generate the dynamical equations of motion for rigid multi-
body chains. Software is described which performs all of the required
symbolic constructions. Examples are given.

I. INTRODUCTION

Computer assembly of simulation models has become recognized
as an important engineering tool. However, relatively little consider-
ation has been given to other applications of computer generated
models such as: nonlinear control system design, construction of
Lyapunov functions, bifurcation analysis, identification of symmetries
and nonlinear system reduction. These require an explicit symbolic
representation of systems not necessary for simulation purposes. The
growing sophistication of symbolic programming languages such as
Mathematica and Maple place such applications within reach for
systems of current interest.

Recently, we described symbolic software for the design of non-
linear tracking and adaptive control laws [1]. We illustrated these
methods with relatively simple multibody models of vehicle and
robotic subsystems. In addition to control system design tools,
the software included automatic generation of model equations via
Lagrange’s equations and generation of simulation code (in C or
FORTRAN). In this paper, we provide new algorithms and describe
software suitable for more complex multibody structures. Our model
building process begins with primitive definitions of individual joints,
bodies and other components and generates the equations of motion in
terms of Poincaré’s form of Lagrange’s equations [2], [3], sometimes
called Lagrange’s equations for quasicoordinates [4].

The key to this process is the formulation of individual joint models
including the selection of joint parameters and the assembly of the
joint configuration matrix, the joint kinematic equation and the joint
map matrix. In Section II we describe a geometric formulation of the
joint representation problem and provide explicit constructions for
both simple and compound joints. These are the main contributions
of the paper. Once the individual joint models are obtained, a second
important computation is the construction of the kinetic energy
function or, equivalently, the system inertia matrix. Our formulation
employs an algorithm proposed by Rodriguez and Jain [5]-{7]. In [8],
we explain how that systematic construction is naturally integrated
with the formulation of Poincaré’s equations. We summarize the
essential ideas behind the derivation of Poincaré’s equations in
Section 11 and describe our symbolic implementation of that process.
In Section IV we give a nontrivial example of a six degree of freedom
robot—a system of the same kinematic complexity as the Puma 560
described in [9] and the space shuttle remote manipulator system [10].
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During the past decade a number of powerful software programs
have become available (¢.g. ADAMS, DYMAC, DADS, TREETOPS
[11], {12]) which have the ability to assemble simulation models
for reasonably complicated multibody systems. Consistent with their
focus on simulation, these packages generate implicit models and
consequently provide only limited support for analytical supplements
to simulation or for control system design [12]. Computer derivation
of the explicit equations of motion for multibody systems has
been previously considered by other investigators including Leu and
Hemati [13] and Cetinkunt and Ittoop [14]. Our approach extends that
work in two important respects. First, we admit a more general class
of joint models in which the joint parameterization and all relevant
joint kinematic relations are derived directly from the specific joint
definition—as opposed to prescribing them beforehand. Second, we
use Poincaré’s form of Lagrange’s equations which allows maximum
freedom of choice for velocity coordinates. That can contribute to
substantially simplified dynamical equations.

II. JOINT KINEMATICS

Efficient characterization of joint kinematics is a key element
in modeling articulated multibody system dynamics. Bodies are
linked together by joints which restrict relative motion between
them. Multibody system configuration coordinates naturally include
the joint configuration coordinates. The critical elements of joint
modeling are the definition of joint parameters, the representation
of joint configuration matrix in terms of them, and the subsequent
derivation of two fundamental relationships. The first is a differential
equation, typically called the joint kinematic equation, which defines
the joint coordinate derivatives in terms of the joint quasivelocities.
The second is a (joint) parameter-dependent map, called the joint
map, which specifies the velocity (angular and linear) change across
a joint in terms of the joint quasivelocities.

Composing the configuration matrix, the kinematic equation and
the joint map involves tedious algebraic constructions for all but the
simplest of joints. Real joints tend not to be nice, e.g., motion axes
are not necessarily orthogonal, which complicates the calculations. In
this paper we describe the computer assembly of these relations for
a reasonably large class of joints.

First we summarize the basic geometric formalism for dealing
with joints. Then we distinguish between “simple” and “compound”
joints and focus initially on simple joints. We explicitly provide
one parameterization for them. In appropriate special cases the joint
parameters turn out to be Euler parameters so we may say that our
parameterization is Euler-like. We also describe a construction of
the kinematic equation which has been implemented in Mathematica.
Examples are given which show the computer generated results for
some standard simple joints. For simple joints the joint map is
essentially the definition of the joint and need not be generated.
This is not the case, however, for compound joints. The kinematic
equation is constructed as for simple joints, but for compound joints
the joint map is also a nontrivial calculation. We describe a method
for assembly of the joint map which has also been implemented in
Mathematica. An example is given.

A. The Geometry of Joints

A joint constrains the relative motion between two bodies. We
designate two rigid bodies and reference frames fixed within them s
(space) and b (body). The configuration space § of relative motion
between two unconstrained rigid bodies is the Special Euclidean
group SE(3) consisting of all rotations and translations of R*. SE(3)
is the semi-direct product of the rotation group SO(3) with the vector
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grou R?, [15). An element in SE(3) may be represented by a matrix
p p

.
X = {LU ﬂ L e SO3). Re R (1)

Two successive relative motions .X; and .X» combine to yield

v v LY R LD R
‘X_‘Xz““_{o 1”0 1
_{LéL{’ LlR.+BQ]

0 1 2a)

The inverse of X is

-1 _|L =R
X= [ LR (20)
In general geometric terms, a joint is characterized by a relation on
the tangent bundle 7°G. Such a relation is usually expressed in local
coordinates by an equation of the type

flaeqy =0 (3a)

where f: TG — R*. Natural constraints almost always occur on one
of two forms:

gy =0 (3b)

in which only the coordinates appear, or

Flq)i=0 (3¢)
in which the coordinate velocities appear linearly. Equation (3b)
defines a submanifold of G which identifies admissible configurations.
Constraints of this from are called geometric constraints because
they restrict the relative geometry of the two bodies. Constraints of
the form (3c) are called kinematic because they restrict the relative
velocity of two bodies. The geometric meaning of (3c) is highlighted
by restating it as

q € Alyq) C))

where A(y) is a distribution on G defined as A(q) = Ker[A(q)].
If the constraint is of the form of (3¢), then it is holonomic [16],
[17] if the distribution A(q) is integrable. General conditions for
integrability of a distribution are well known and given by the
Frobenius theorem [15].

Since T'G is isomorphic to G x g, where g denotes the Lie algebra
associated with 4, it is possible to characterize joint constraints which
involve velocities (i.e., 3c) by a smooth map f: G x g — R* so that
the joint is defined by equations of the form:

Alg)p = 0. (&)
where p € g and A(q) is a linear operator on g. The geometric
meaning of (5) is

p € Ker[4(q)]. ©6)

Equation (5) is a more general and more convenient characterization
of kinematic joints than (3c).

Let us take ¢ = SE(3) and consider the formal representation of

objects belonging to its Lie algebra g = sc¢(3). We can use either
right or left translations on ¢ to define g. We choose left, so that

eaie [ -RY[LT R
pi=3 “‘[0 1“0 n]

CTLET LRY  [an e
=[5 &=l v e
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TABLE 1
EXAMPLES OF JOINT MAP MATRICES OF SIMPLE JOINTS
0 00 0 0 00
0 10 0 0 00
1 01 0 1 10
0 00 0 0 00
0 00 0 0 00
0 00 1 s 01
1 dof 2 dof 1 dof 1 dof 2 dof
revolute joint universal joint prismatic joint screw joint cylindrical joint
body z-axis body y,z—axis body z-axis body z—axis body z-axis

Notice that in (7) we use the conventional notation, by which any
vector @ € R? is converted into a skew-symmetric matrix @(a):

0

3

—ay
0

ay

P}
ala) = —a

0

—

Thus, we see that g is isomorphic to R" and we can consider
an element p of g to be a pair of objects—body angular velocity
and linear velocity—(.s. ¢) or, equivalently, (ws. v5). When doing
formal group calculations however, we us2 the matrix form shown
in (7).

B. Simple Kinematic Joints

Kinematic joints are joints which are described by velocity con-
straints such as (3c) or (5). They are simple if the motion axes are
fixed in (at least) one of the bodies—in which case the constraint
can be formulated so that 4 is a constant (independent of the
configuration). For lack of a general terminology we call such joints
simple kinematic joints. We now focus on simple kinematic joints.
It is convenient to define a matrix H whose columns form a basis
for Ker[.4] so that

Ker[A] = Im[H]. H is of full rank r = dim Ker[d].  (8)
Solutions of (5) are of the form
p=HJ. JeER )]

.3 represents the joint quasivelocity and » is the number of velocity
degrees of freedom. H is called the joint map matrix.

The joint configuration is defined, in general, by the differential
equations

X=Xp (10a)

or, equivalently

L=-uL R=L"w. (10b)
It is easy enough to replace ., and v, by .3 using (9). Let H be
partitioned so that H, contains the first 3 rows and H, the second

three rows, then

(11a)
or

L=—(H HL. R=L"(Hys. (11b)

The joint kinematics are defined by (11). Given the quasivelocities
3, (11) can be integrated to provide the relative translational position
and rotation matrix of the two bodies. However, this representation
may not be the most informative and it certainly provides more

information than necessary since it locates the relative position in
the six dimensional group SE(3) instead of the relevant subgroup.
If the constraint is holonomic, precisely » dimensions would suffice.
First, we provide a result for single degree of freedom joints.
Proposition 1: Consider a simple single degree of freedom joint
with joint map matrix H = I € R". Then the joint configuration
matrix can be parameterized by a parameter = € R in the form:

() = L"(s) Ri(=)
V=10 1

Y
/ " Nhaydo.
Jo

Proof: Consider a general one degree of freedom joint in which
H is composed of the single column h. Then the distribution A(X)
on SE(3) consists of the single vector field

[L’I.]\U L'I")gjl

0 0
This is an integrable distribution and we seek the integral manifold
which passes through the point

. I 0
Ko = L) 1} :
The one dimensional manifold we seek can be characterized (at least

locally) by a map \: R — SE(3). Let = € R be the parameter. Then
we seek a solution to the differential equation

(12a)
with

Liz)=¢ M7 R(z) = (12b)

’(’I_\ - [L'U"‘ LIU”"} (D) = Xo (13)
or equivalently
# =—hL. L(0)=1. and ({']—R =L"hs. RO)=0
(14)
so that (12a) and (12b) follow. ]

We will give some explicit examples below.

Note that if H is composed of several columns, say r, then we
can consider this joint as a sequence of r single column joints and
compute \;(=;) for each joint. Thus, we have

Corollary 1: Consider a simple joint with r degrees of freedom
and joint map matrix H = [h,---h,] € R°*", then there is a
parameter vector = € R" and the joint configuration matrix can be
expressed in the form

V)= v lme) = (En) (15)

where each \,(=;) is of the form of Proposition 1 with hh = /.
We conclude that any simple kinematic joint is holonomic and,
in fact, we have explicitly computed a local representation of its
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configuration manifold. Now, any motion results in a velocity X =
-Xp. We wish to characterize this relation (locally) in terms of the
rate of change of the joint parameters. In other words, we seek to
relate © and J. The following proposition does that.

Proposition 2: Consider a simple joint with joint map matrix
H = [hy---I] € R"™", and suppose the joint is parameterized
according to Proposition 1 and Corollary 1. Then the joint kinematic
equation is

s=T(=)4 (16)
where ['(7) is defined by the following algorithm:
1) For j =1..... r define £! and R;
Lz, 90)
=L+ e Lh =T (172)
Ro(zj0. .. o)
=L+ R (51 D.+R,.Ro=1. (17b)
2) Define B(:)
pe= o ] s
b= L, ha L] (18b)
bai =L, 1 hayRi—y + Lizihpo. (18¢)
3) Define I'(=)
[(2):=[B"(s)H]. B"(z) denotes a left inverse of B(=).
(19)
Proof: Any motion results in a velocity X= Xp which implies
X = 235\' 3= ()p.
Now, we directly compute
ng\li;: =) (s
X l(ll\ll Vi—t(zimn) o (En)E
and premultiplying by \~' we obtain

Shootlzmn) =]y
dy,

"(z))

X F[\:—I(f:—l)"'\I(fl)]:;z = (20)
Notice that
1 )r/\, _ by hos
VoI 0 0
Also, define Uj(=;.....21).j = 1..... r by the recursion
Uitz5eccz0) = 00002020 <1).  with
Uilz1) = \vila0) 1)
so that (20) can be written
. il ]) 2 -
- 1 1 i2 s
_l,,,{() 0 :|(,,7|,,—[). (22)
We can easily determine, from (18), that {’; is of the form
L = [L‘vj,-(:l_..u;l) R, ,.....:n)} (23a)
! 0 1
with
Ll s ) =Ll )L0 (520 Lo =1 (23b)
Rz =L (s))R,(5,1.....51) + R, . Ro = 0.
(23¢)

Thus, (22) reduces to
vl:[':—li’:l[’,l7| L'lyflilrlRyfl + L b,
- 0 0

{H‘,; H._,.f}
:1}:

00 @4

Each expression of the form £, 7, £/, is an antisymmetric matrix
so we can define b;; € R* such that

by, = .C,ql\z,\[.;',,\.
We also define
boii= Lo bt Ry + Li vl
Then (24) can be written

Bls):= HIB(-):= |0 bl
by ooe by
Let B* denote the left inverse of B—which exists on a neighborhood
of = = 0 because B(()) = H is of full rank. Then

2= [B*(2)H]S =T(=)d. [(=):=[B*(=)H] ]

C. Computer Implementation

There are two useful constructions for simple joints: (1) assembly
of the configuration matrix, \ (), and (2) assembly of the kinematic
matrix I'(z). Correspondingly, we have two Mathematica functions
to implement these calculations; XXeuc and GammaKin. The input
to these functions is the 6 Xr joint map matrix, H, and a list of
r names for the joint parameters. For example, consider a spherical
joint. The Mathematica input would look as follows.

(* Define Joint Map Matrix *)
H=Join [Identity Matrix([3],

DiagonalMatrix [{0,0,0}1]

(* Name Joint Parameters *)
v={v1l,v2,vy3}

(* Compute Configuration Matrix *)
XXeuc [H,vy]

(* Compute Kinematic Matrix *)
GammaKin [H,y]

Typical results of such calculations are given in Table II.

D. Compound Kinematic Joints

Not all joints are simple kinematic joints. But in many cases it
is possible to define the action of a joint in terms of a sequence
of simple kinematic joints. We call such joints compound kinematic
Jjoints. In general, a compound joint is defined as a joint which can
be characterized as the relative motion of a sequence of p reference
frames such that relative motion between two successive frames is
defined by a simple kinematic joint. Then each of the p simple
joints is characterized by a joint map matrix H; with r, columns,
a quasivelocity vector, .4, of dimension r,, a prameter vector, =;,
of dimension »;, and a kinematic matrix I';(=,). Thus if we define
c:=[zy--+2,] and J := [4) -+ ,], we have the joint kinematics

defined by

= diag[li(=1)..... I(z)]4 (25)

and, assuming the frames are indexed from the outermost, the overall
joint configuration matrix is

(S = lE) a5, (26)

Equations (25) and (26) provide the kinematic equations for com-
pound joints.
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TABLE 11
COMPUTER GENERATED KINEMATICS (I'(¢)) FOR SOME SIMPLE JOINTS

H={0,0,1,0,0,0}, revolute
Y
H=(0,0,0,1,0,0}, prismatic
{1}
H=(1,0,0,5,0,0}, screw
n
H=({0, 1}, (0, 0}, {1, 0}, {0, s}, {0, O}, {0, 0}}, simple universal-screw
{{1,0}, {0, Cos[z11}}
H={(0, 0}, {1, 0}, {0, 1}, {0, 0}, {0, 0}, {0, 0} }, simple universal
{{1,0}, {0, Cos{z1]}}
H=({1,0, 0, {0, 1,0}, {0, 0, 1}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}, spherical
{{1, Sin[y1] Tan[y2], Cos(y1] Tan[y2]},
{0, Cos[y1], -Sin[y1}},
{0, Sec[y2] Sinfy1], Cosly1] Secly2}})

Remark: In view of (26) and Corollary 1, a p-frame compound
joint with joint map matrices H,. i = 1..... p. yields the same
configuration manifold parameterization as a simple joint with joint
map matrix H = [H,---H,].

As we will see below, the overall joint map matrix is also required
in order to assemble the dynamical equations for multibody systems.
The required constructions are provided in the following proposition.

Proposition 3: Consider a compound joint composed of p simple
joints with joint map matrices H; = [k} ---h!'] € R**",
1o.... p. Suppose = := [zy---7,] and 4 := [, ---.3,] are the
corresponding simple joint parameters and quasivelocities. Then the
composite joint map matrix H(z) € RO*"11 ¥ s given by the
following construction:

I =

N by e Dy,
H(;).,Lm hz,} @n
where

Dy =Ll Ll b= Lo W Ry + Looi Dy,
fori=1..... p and j=1..... r, (28a)
Clizo sy =L 0Ll G200 Ly =1 (28b)

Rilzieoooozy = LIRSz .21+ R, Ro = 0.
(28¢)

Proof: The overall joint velocity is

. 4]
\=Zzaj~,‘:\(-w (29)
=1 =1 T
Notice that for each fixed / > 2,
O, o)
— = \plsy) \,+1(",+1){ - “;’}

=1 9= =1 o]

X (o) ecovaden) (30)

But, as computed above for simple joints,

) N
i

Za\:(f«)}/ — i) Hii s, Hiz:di
g T\ 0 0o |

i=1

(31

Thus we have

- [HY 3 Hiz b - _ -
=1 o +Z)\,,<r,,>---\,(:,>

I:'Hyl‘f, Hiz
X

0 0 }\,71(5‘,4)“‘\1(6\):\(:")1)

or, premultiplying through by \(z),

S o
P=1y o

T d Hisd » -
:[ ](]) ‘ l“ ']+Z[\,f—l(rhl)“'\l(i’l)] :

[H,M, Hi2 3,

0 0 (32)

}[\:—1(:‘,—1 ) (=0
This important relationship gives the body rates across the compound
joint in terms of the joint quasivelocities.

Now, we can also write

lH:I"r Hizdi | & il,1 ]’,‘2 j
{ 0 0 ] - 2 [ 0 0 i (33)
=
So that (32) can be written in the form
p=H(=)) (34)
where H (=) is constructed as follows:
il,| = L‘1v|]‘I/1L:;];1. )1,2 =L, ,1i1,,|'R,~] +L‘,,7|’7,’2.
fori=1..... pand j =1..... ri.
In this case
IJ‘,"(:", ..... o) = L,’ (?,)L‘,,’,|(;',,;.....3‘| ). L'é' =1
Rz o) = L,[ ()R, —i(sicheeo.s1)+ R Ro=0.
O

Note that these equations differ from those of Proposition 2 only in
that each =, is a vector of dimension r, rather than a scalar.

E. Computer Implementation

There are three constructions for compound joints: (1) assembly
of the configuration matrix, \(:), (2) assembly of the kinematic
matrix [(7), and (3) assembly of the joint map matrix H(:).
Correspondingly, we have three Mathematica functions to implement
these calculations; XXCmpnd, GamCmpnd and HCompnd. The input
to these functions consists of: a list of the p numbers ri..... Yy,
the matrix, H, composed of p simple joint map matrices H; €
RO = 1..... p, and a list of r = ry 4+ --- + r, names for
the joint parameters.

A widely used example of a compound joint is the 3 degree of
freedom universal joint. Such a joint is illustrated in the figure. This
joint is composed of three elements and requires three frames to
describe the composite motion. The relative motion between each of
them involves one degree of freedom. In our terminology

1 0 0
0 1 0
. 0 0 1
"= 0 0 0
0 0 90
0 0 0
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W22

Fig. 1. Diagram of a 3 DOF universal joint. Note that the joint itself is
composed of three bodies in addition to the fixed reference body.

(* Define Script-H *)

H=Join[IdentityMatrix [3],
DiagonalMatrix[{0,0,0}]]

(* Define dof Vector *)
r={1,1,1}

(* Name Joint Parameters *)
t={cl,t2,t3}

(* Compute Joint Map Matrix *)
HCompnd [r,H, t])

(* Compute Configuration Matrix *)
XXCmpnd{r,H, t]

(* Compute Kinematic Matrix *)
GamCmpnd (r,H, t].

The results of this calculation are:

1 0 —sint2
0 costl  cost2sintl
0 —siutl costlcost2
=10 0 (35a)
() 0 0
0 0 0
see (35b) at the bottom of this page and
1 0 0
r=10 1 0 (35¢)
0 0 1

F. Remarks on Configuration Coordinates

The joint quasivelocities are naturally defined by the action of the
joint. Joint configuration coordinates, however, are defined by the
kinematic relation (16). While these equations formally define the

coordinates (by defining ¢), they also provide a physical interpreta-
tion. Before examining some examples, note that I'( =) itself follows
directly from the joint definition. Therefore to the extent that there is
some freedom in specifying the joint parameters (the vector  and the
matrix H ), the user sets up the physical meaning of the coordinates =.
To see how this works, consider a general six degree of freedom
joint (unconstrained 6 DOF relative motion) defined by:
r={6}; H=IdentityMatrix[6];
g={ax,ay,az,x,y.z};
p={wx,wy,wz,ux,uy,uz};
Consider this joint as depicting the relative motion of a body with
respect to a space frame. The velocity transformation matrix I is:

[ = diag(I'i.T») (36a)
1 sinartan ay cosartanay
=10 cosar —sinar (36b)

0 secaysinar COs A secay

see (36¢) at the bottom of the page.

Inspection and comparison with standard results (e.g., [18]) reveals
that the coordinates «.r.«y. > are Euler angles in the 3-2-1 conven-
tion, and the coordinates .. y. = define the postion of the body frame
relative to the space frame, as represented in the space frame. In other
words, the quasivelocity vector (u.r. uy. « ) corresponds to the body
linear velocity in the body frame whereas the coordinate velocity
(. g. %) represent the same body linear velocity in the space frame.
By interchanging the first three columns of H, the resultant angle
parameters again turn out to be Euler parameters, but in different
conventions. If the columns in H corresponding to angles and linear
displacements are interchanged, then the representation of the linear
velocity and displacement will switch from space to body frame (or
vice-versa).

Our parameterization is more flexible than the commonly used
Denavit-Hartenberg (D-H) parameterization [19] because the model
builder can, to some extent, control the physical meaning of the
joint coordinates. Moreover, to use the D-H parameters, each joint
must be treated as a compound sequence of one degree of freedom
joints which eliminates the potentially substantial simplification of
the dynamical equations afforded by Poincaré’s form of Lagrange’s
equations. We will discuss this point below. The great advantage
of the D-H parameterization is that the configuration matrix is of a
fixed and specific form that is particularly easy to use when doing
kinematic calculations by hand for systems involving revolute and
prismatic joints. This, of course, was the overriding consideration at
the time of publication of [19], but it is not an essential factor when
using computer algebra constructions.

III. POINCARE'S EQUATIONS

Our approach to multi-flex-body modeling is based on the La-
grangian framework. The Lagrangian dynamics for multibody sys-

cost2cost3
cost2sin 3

cost3sintlsint2 — costlsint3
costlcostd 4 sintlsin#2 sin #3

costlcost3sint2 +sintlsint3 0
—cost3sintl + costlsin#2sint3 0

X = . . (35b
—sint2 cost2sintl costlcost2 0 )
0 0 0 1
COSAY COSaT  COsdssinarsinay — cosarsinas COS A0 Cos Az sinay + sin e sin a2
[>= [cosaysina:  cosarcosaz 4+ sinarsinaysinas  — cosaz sin a.r + cos a.r sin aysinaz (36¢)

—sinay Cos ay sin ar

cCosarcosay
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tems are conveniently formulated using quasivelocities [2]-{4] which
result in a system of equations often called Poincaré’s equations.
The method has been further developed using the recursive construc-
tions introduced by Rodriguez and Jain [S]-[7] for serial chains of
articulating bodies.

A. Hamilton’s Principle and the Euler-Lagrange Equations

The formalism of Lagrangian dynamics begins with the identifi-
cation of a configuration space, i.e., a set of points which form a
manifold, )/, and which are in a one-to-one correspondence with
the possible physical configurations of the system of interest. The
velocity at a point ¢ € M is an element, ¢, belonging to the tangent
space to M at y, often denoted T,.M. The state space is defined
as the union of tangent spaces at all points ¢ € [, the so-called
tangent bundle T1/. The evolution of the system in the state space is
characterized by the definition of a Lagrangian L(q.q) : TM — R
and use of Hamilton’s principle of least action. This leads to the
Euler-Lagrange equations

B )
dt Jq Jq
In the usual case we have L({q.q) = T(q.q) — V(q), where T and
V' are the kinetic energy and potential energy functions, respectively.

It is well known that in some cases it is easier to formulate the
equations of motion in terms of velocity variables which can not be
expressed as the time derivatives of any corresponding configuration
coordinates. Such velocities are called quasivelocities. Quasivelocities
are meaningful physical quantities—the angular velocity of a rigid
body is a prime example. Such alternatives to Lagrange’s equations
were produced at the turn of the century (see, for example, [16] and
2).

Let M be the m-dimensional configuration manifold for a La-
grangian system and suppose t'f..... ', constitute a system of m
linearly independent vector fields on .J/. Then each commutator of
pairs of vector fields can be expressed

(37

m

RO Ao

k=1

(38)

Suppose ¢(t): [ti.#:] — M is a smooth path; then ¢(t) denotes
the tangent vector to the path at the point ¢(t) € 3. Thus, we
can always express ¢ as a linear combination of the tangent vectors
i o= 1o, m

q=V{gp. (39)

The variables p are called quasivelocities.

It is always possible to write the Lagrangian in terms of ¢ and p
using (39). Set L‘(q. p) = Liq.¢). Interms of £ Lagrange’s equations
are attainable in the form given by the following result.

Proposition 4: Hamilton’s principles leads to the equations of
motion in terms of the coordinates 4. p

m

d C)L; ( kY T

—— - y —vi(L)=Q v 40

dt dpy. ,,,Zzl ok 1) bi kL) 2o 0)
or, equivalently,

dOL 0L N~ 0L

=z _ == X, - —V = ! 41

dt Op 011‘ ;“’ T 0y @ 0
where V7 = [1r) vy 0] and X; = [[oj0 e[y o] [0 en]]

vy denotes the differential operator form of 1.

joint K

Fig. 2. A serial chain composed of ' + 1 rigid bodies numbered 0 through
K and K\ joints numbered 1 through A", On an arbitrary kth link the inboard
and outboard joint hinge points are designated (). and C'x. The body fixed
reference frame F* has its origin at ().

A proof of the proposition as stated here is given in [2]. Alternate
derivations may be found in [4], [16], and [3].

Remark: If V'(q) = I, then Poincaré’s equations are Lagrange’s
equations. In this case the vector fields v, are aligned with the
configuration coordinates.

B. Kinetic Energy for Serial Chains of Rigid Bodies

The key issue in applying Lagrange’s or Poincaré’s equations to
complex multibody dynamics is the formulation of the kinetic energy
function and we focus on that construction. Suppose C' is any point
fixed in a rigid body. Rodriguez et al. [5]-[7] define the spatial
velocity at point C of any body-fixed reference frame with origin
at point C' as V. = [, ¢.] where v, is the velocity of point C' and
w is the angular velocity of the body. Let () be another point in the
same body and let r., denote the location of ' in the body frame
with origin at . Then the spatial velocity at point (" is related to
that at () by the relation

Vo=o(r. )b, (42)

0 . VTR F A o
I}‘ and its adjoint ©" (r..,) = [ 7 }
(43)

Now, consider a serial chain composed of i + 1 rigid bodies
connected by joints as illustrated in Fig. 2. The bodies are numbered
0 through A’, with O denoting the base or reference body, which
may represent any convenient inertial reference frame. The kth joint
connects body & — 1 at the point C'x—, with body # at the point ;..

Let F* denote a reference frame fixed in body & with origin at
O. :* denotes the vector from ()4 to Cx in F* and r* denotes the
vector from O to Oy in F¥. We will use a coordinate specific
notation in which vectors represented in ' (or its tangent space) will
be identified with a superscript */”. Coordinate free relations carry
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no superscript. The kth joint has ny, 1 < ny < G degrees of freedom
which can be characterized by 1, quasivelocities $(k) and a joint
map matrix H(k) € R**"* sothat 1, — V., | = H(k)J(k).

Rodriguez and his coworkers establish the recursive velocity
relation which we write in coordinate specific notation

VARY =olr! (k= IV (k= 1)+ H' (k)3 (k). (44)

Let us assume that H (k) and .3(k) are specified in the frame F*
and 1 (A — 1) has been computed in the frame F *=!' Then it is
convenient to compute 1 (&) in the Ath frame

V) = diag(Li—y.x. Loy x)o(rh, " (k-

+ H (k)" (k).

V=1
(45)

If 1°°(0) is given, then (45) allows us to compute recursively, for
o= 1..... IU, the linear velocity of the origin of F* and the
angular velocity of F*, both represented in the coordinates of F*.
In what follows we take 17((}) = 0. Abusing notation somewhat, it
is convenient to define

ok b —1) = diag(Ly_ 4. Loy )o(rE7 (k= 1)) (46)
so that (45) can be written
V) = ok k= DV "k = 1)+ HY (k)55 (k).
F=1..... L. V) =0. 47

It is necessary to define a spatial inertia tensor as well. Consider
the Ath rigid link and let I.,,,(*) denote the inertia tensor about the
center of mass in coordinates F* . m (k) denote the mass and (k)
denote the position vector from the center of mass to an arbitrary
point (). The spatial inertia about the center of mass, M., and
about O. 1/,, are

Iy 0
Men(h) = [ 0 ml:|'

(48)

M (k)= o (a) Mepmola) = |: L, _ m”}
—ma ml
where I, is the inertia tensor about 0.
The spatial velocity and spatial inertia matrix and, hence, the
kinetic energy function for the entire chain can now be conve-
niently constructed. Let us define the chain spatial velocity and joint

quasivelocity

V=["1)..... VAR = SR (49)
so that we can write
V = dH 5. (50)
where
M I 0 e 0]
o(2.1) I e 0
P = . . .
lo(h.1) o(h.2) T ]
[H(1) 0 0 ]
0 H(2) 0
H= . . (€2))
L 0 0 H(K)
olicjy=oli.i—=1) - olj+1.j).
=200 L and j=1..... K -1

The following result is easily verified.

Proposition 5: The kinetic energy function for the chain consisting
of links | through K is

K E i = 51 M (520)

where the chain inertia matrix is
M=H"®"MPH. M = diag(M.(1)...... VL(K)). (52b)
Remark on the Structure of Poincaré’s Equations: The above

definitions and constructions provide the kinetic energy function
in the form 7 (¢.p) = (1/2)1)’,\/l(q)p. Hence, we reduce (41) to
the form:

Mg)p+Clegplp + Flg) = Q, (53a)
where
Claep) = —[O[b‘:”’r] +3 {O‘b‘:ﬂ)r} '
+ ip,.\'] } Vv (53b)
=
Fao=1" 20 g =1 630

Notice that (J,, denotes the generalized forces represented in the p-
coordinate frame whereas () denotes the generalized forces in the
¢-coordinate frame (aligned with ¢).

Remark on Computations: The key point to be noted is that the
matrix ¢ (and hence the product ®H) can be recursively computed.
Thus, we can compute the spatial velocity of any or all of the
bodies via (49) and the inertia matrix using (52b). Once this is
done, we compute C(q.p), F(g) and (Q, explicitly using (53b
and 53c), assuming that the potential energy function V(¢) and
the generalized force vector () are available. In general, both V
and () are defined in terms of coordinates and velocities (in the
case of ()) other than the configuration coordinates ¢ and the
quasivelocities p. Thus, it is necessary to develop any transformations
required to obtain V and () in terms of ¢ and p. We cannot give
a complete discussion of this process here but note that velocity
transformations are recursively constructed using relations like (47)
or (50), and coordinate transformations are built up from the usual
sequential multiplications of configuration matrices. Assembly of the
system gravitational potential energy and end effector position and
orientation, needed below, require constructions of this type.

Remark on the use of Poincaré versus Lagrange Equations: Notice
that the kinetic energy can be expressed in terms of ¢ rather
than p, T(q.4) = (1/2)¢" {V(¢)""M(¢)V (¢)"'}4, and hence
we have the essential data to construct Lagrange’s equations rather
than Poincaré’s equations. However, Poincaré’s equations may have
important advantages. An obvious and practical one is the relative
simplicity of the inertia matrix. However, there is an important
theoretical consideration as well. Lagrange’s equations fundamentally
constitute a local representation whenever local coordinates are
introduced, whereas Poincaré’s equations may still admit a global
description of the dynamics. This is easily seen by comparing the
Lagrange and Poincaré formulations for the dynamics of a rotating
rigid body. We do this below.

C. Computer Implementation

To formulate the equations of motion for a chain of rigid bodies
several Mathematica functions have been implemented. We describe
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three principle functions: RgdChn, Cmat, and PoincFunc.
RgdChn generates all of the kinematic relations and the chain inertia
matrix. It has three inputs: a list of joint data, a list of body data, and
a list of coordinate names. Each joint is defined by two pieces of data
as described above; a p-vector ry..... r, and a matrix H € R®*"
with r = ry 4+---4r,. The joint data list is a list of such pairs. Each
body is characterized by four pieces of data; the location of the center
of mass in a body frame with origin at the inboard joint, the location
of the outboard joint in the same frame, the body mass, and the body
inertia tensor about the center of mass. The body data list is a list of
such quadruples. RgdChn returns a list of three items: (1) a list of
square matrices which are the diagonal elements of the block diagonal
kinematic matrix, (2) a list of 4 x 4 matrices which are the Euclidean
configuration matrices for the joints, and (3) the chain inertia matrix.
The function Cmat receives as input the chain inertia matrix, 1/,
the list of diagonal matrices of the kinematic matrix, 17, the list of
coordinate names, ¢ and a list of velocity names, p. It returns the
matrix C(q.p). The function PoincFunc receives 1/, 17, ¢, p and
also the potential energy function, V(¢), and a vector of generalized
forces (),,. It returns the vector function F' = C(q.p)p+ F(q) - Q,,
thereby completing Poincaré’s equations.
As an example of the application of these functions let us consider
a thin disk free to rotate about its center of mass in space without
any external or gravitational forces. The single joint defining relative
motion between the space frame and the body frame is considered
as a simple spherical joint.
(* Rigid Body Example-Thin Disk *)
(* Spherical Joint *)
r1={3};
Hl= Join{IdentityMatrix([3],
DiagonalMatrix[{0,0,0}11;
JointLst={{rl, H1}};
(* Body—thin disk *)
ml=5;R1=2;I1l=DiagonalMatrix[ {(1/4)
*ml*R172, (1/4)*ml1*R172, (1/2)
*ml*R1°2 } ];
cml= {0,0,0};0c1={1,0,0};
BodyLst= {{cml,ocl,ml,I1}};
(* Name Coordinates *)
g={tl,t2,t3};
(* Compute Matrices: Kinematic,
Configuration, Inertia *)
{v,X,M}=RgdChn[JointLst, BodyLst, ql
(* Name Quasi-Velocities *)
p={wl,w2,w3};
(* Compute C-Matrix *)
GG=Cmat [M,V,q,p]
We summarize the results as follows: X () is given by (35b),

1 sinfltant?2 costltant2

T(ry=10 costl —sintl (54a)
0 sect2sintl  costlsect2
530 0 —Dw2wd
Mity=10 5 0 F(tow)=Clq.p)p= | dSwlu3
0 0 10 0
(54b)

Poincaré’s equations are recognizable as Euler’s equations.

It is interesting to repeat this calculation with the simple spherical
joint replaced by a compound 3 dof universal joint. The only change
required in the above Mathematica code is to replace the definition of
r1={3} by r1={1,1,1}. As noted above, the parameterization of
the configuration of the rigid body is the same as that of the simple
joint, i.e., X (#) is unchanged and ['(¢#) = Is. The other relevant

-
-
lower arm
upper arm
shoulder
I
I
[}
Fig. 3. The six degrees of freedom arm used in the example.
results are as follows
M=
5 0 —5sint2
0 3/2(3—cos2tl)  —53/2cost2sin 2t]
10 cos t12 cos 122
Ssint2 —5/2cost2sin2t1 45 cost2? sin 12
+5sint2
(55a)

Fy(t.u) = u3(=5bu2cos2tl cost2 — Hu3cos 2% sin 2t1)/2
+ u2(hudcost2 + (—du3cos2tlcost2
+ 5u2sin 2t1)/2)
Ey(t.u) = ul(—=5u3cost2/2 + Sudcos2tl cos 12 — Su2sin 2t1)
— bu2u3sin 2t sin #2/4 + (u3(=5ulcost2
+ 5u2sin 2t1sin12/2 — Su3 cos 117 sin 2¢2)) /2
Fi(t.u) = ul(bu2cos2tl cost2 + Sudcos 2% sin 2t1)
+ u2(bulcost2 — Su2sin 2t1sin 2/2

+ Su3costl? sin 2¢2). (55b)

These equations are, of course, Lagrange’s equations—a consequence
of the fact that the joint formulation commits us to velocity coordi-
nates aligned with the configuration coordinates. The simplicity of the
kinematic matrix is more than offset by the complexity of the dynami-
cal equations. Notice also that the dynamical equations in the previous
case, defined by (54b), are independent of the configuration parame-
ters. They are globally valid equations, whereas the latter are not.

IV. EXAMPLE

As a more complete example of the methods described above, we
consider a six degree of freedom robot arm. The system is composed
of three joints and three bodies as illustrated in Fig. 3.

The following Mathematica program constructs all of the kinematic
relationships and Poincaré’s equations.

(* joint 1—compound shoulder *)
ri={1,1};
H1={{0,0}, {1,0}, {o,1}, {o,0}, {0,0},
{0,0}}:
(* Joint 2—revolute elbow *)
r2 :{ 1 } ;
s2={{o}, {1}, {o}. {o}, {o}. {o}}s
(* Joint 2—compound wrist *)
r3={1,1,1};
H3={{0,0,1}, {1,0,0}, {0,1,0}, {0,0,0},
{o,0,0}, {0,0,0}}:
JointLst={{r1,H1}, {r2,H2}, {r3,H3}};
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(* Body 1—slender bar upper arm *)
ml=1;L1=3;Il=DiagonalMatrix[{(1/12)*ml
‘L172, (1/12)'ml'L1"2,0})
eml={0,0,L1/2};0c1={0,0,L1};
(* Body 2-—slender bar lower arm *)
m2=1;L2=3;I2=DiagonalMatrix({(1/12) m2
‘L272, (1/12)'m2°L272,0}1;
cm2={0,0,L2/2}; oc2={0,0,L2};
(* Body 3—cylindrical gripper *)

m3=.5; L3=.7; R3=.35;

I3 = DiagonalMatrix[{(1/12)*m3"
(L372+3"R372), (1/12)*m3"
(L372+3"R372), (1/12) "'m3*R3°2}];

cm3={0,0,L3/2}; 0c3={0,0,L3};

BodyLst={{cml,ocl,ml,I1},{cm2,0c2,m2,12},
{cm3,0c3,m3,13}};

(* coordinates *)

g={sl,s2,e,tl,t2,t3};

{v,%,M}=RgdChn[JointLst, BodyLst, ql

XEnd=XEndEf [BodyLst, X, q]

(* quasivelocities *)

p={wl,w2,ul,vl,v2,v3};

PE=GravPotChn[BodyLst, X, ql

0={T1,T2,T3,T4,75,T6};

F=PoincFunc[M,V,PE,Q,p,q]

Two new functions are used. XEndEf computes the configuration
matrix of the end effector as a function of the joint parameters.
GravPotChn computes the gravitational potential energy function.
Both functions require the same three pieces of information as input:
the list of body data, the list of joint configuration matrices, and the
list of joint parameter names. In this example, the function XEndgEf
returns the configuration matrix of the end effector relative to the
space frame:

{{Cos[t1l]Cos[t2] (Cos[elCos[sl]Cos[s2]

-Cos[s2]Sin[e]lSin(sl]) -

Sin[s2] (Cos[tl]Cos[t3]

Sin(t2]+Sin[tl]Sin(t3])

+(Cos [ sl]Cos[sZ]Sln[ ]+Cose]

Cos[s21S8in[sl]) (-(Cos[t3]Sin[tl])

+Cos[t1151n[t2]81n[ 31y,
-{Cos[t2]Cos[t3]Sin[s2])
-({Cos[e]Cos[sl]Cos[s2]
-Cos[s2]Sin(elSin[sl])Sin(t2]
+Cos[t2] (Cos[sl]Cos[s2]Sin[e]
+Cos[elCos(s2]S8in(sl]))Sin(t3],

Cos[t2] (Cos[e]Cos[sl]Cos[s2]
-Cos[s2]Sin[e]Sin(sl])Sin[tl]-

Sin[s2] (Cos([t3]8in{tl]Sin[t2]
-Cos[tl]Sin(t3])+(Cos([sl]Cos[s2]Sin[e]
+Cos[e]Cos(s2]Sin{sl]) (Cos[tl]Cos[t3]
+Sin[t1]Sin[t2])Sin[t3]),

3Cos[s2]1Sin[sl]+3(Cos[sl]Cos[s2]Sin[e]
+Cos[e]Cos([s2]1Sin[sl])+0.7(Cos[t2]
(Cos[e]Cos[sl]Cos[s2]
-Cos[s2]Sin[e]lSin[sl])Sin[tl]-

Sin([s2] (Cos[t3]Sin[tl]Sin([t2]
-Cos[tl1l]Sinft3])+(Cos{sl]Cos[s2]Sinle]
+Cos[e]Cos[52]Sln[sl] (Cos[t1l]lCos[t3]
+Sin[tl1]sin[t2]1Sin([t3]))},

{Cos[t1l]Cos[t2] (Cos[elCos[s1]Sin[s2]-
SinfelSin[sl]Sin(s2])+Cos[s2]
(Cos[tllCos([t3]Sin[t2]+Sin[t1]18in({t3])
+(Cos[sl]Sin[e]Sin[s2]+Cos|e]
Sin{s1]Sin(s2]) (-(Cos[t3]8in(tl])
+Cos[t1]Sin[t2]1Sin(t3])

Cos[s2]Cos([t2]Cos([t3]
-(Cos[elCos[sl]Sin[s2]
-SinfelSin(sl1]1Sin(s2])Sin(t2]
+Cos [t2] (Cos[sl]Sin[e]lSin[s2]
+Cos[elSin(sl]Sin(s2])Sin[t3],

Cos[t2] (Cos[elCos[sl]Sin[s2]
-Sin(e]Sin(sl]Sin(s2])Sin([t1]
+Cos[s2] (Cos[t3]1Sin[tl1]Sin(t2]
-Cos[t1l]Sin[t3])+(Cos[sl]Sin[e]lSin[s2]
+Cos[e]Sin[sl]Sin(s2]) (Cos[tl]iCos[t3]
+Sinftl])Sin(t2]Sin[t3])
3S8in[sl1]Sin[s2]+3(Cos[sl]Sin[e]Sin([s2]
+Cos[elSin[sl]Sin[s2])

+0.7(Cos([t2] (Cos(elCos(sl]Sin[s2]
-SinfelSin[s1]Sin[s2])Sin(tl]

+Cos[s2] (Cos(t3]Sin(t1])Sin{t2]
-Cos[tl1l]1Sin(t3])+(Cos[sl]Sin(e]Sin(s2]
+Cos[e]lSin[sl1]Sin[s2]) (Cos[tl]Cos([t3]
+Sin[t1]18in[t21S8in[t3]1))},

{Cos[tl]Cos[t2] (-(Cos[sl]Sinlel)
~-Cos([elSin[sl])+(Cos[e]Cos[sl]
-Sin(elSin[sl]) (-{Cos[t3]Sin[tl])
+Cos [t1]Sin[t2]Sin(t3])

-((-{Cos[sl]Sinfe))
-CoslelSin(sl])Sin(t2])
+Cos [t2] (Cos[e]Cos(sl]
-Sin(elSin(sl])Sin(t3],

Cos[t2] (-(Cossl]Sin[e])
-Cos[e]Sin[sl))Sin[t1]
+(Cos[e]Cos(sl]

-Sin[e]Sin(sl]) (Cos{tl]Cos{t3]+
Sin[tl]Sin(t2]Sin([t3])

3Cos[sl]+3(Cos(elCos[sl]-Sin[e]Sin[sl])
+0.7(Cos[t2] (- (Cos[sl]Sinlel)

-Cos{elSin([sl])Sin{tl]+(Cos[e]Cos[sl]
-Sin[ejSin(sl]) (Cos[tl]Cos[t3]
+8in[t118in[t2]18in{t3]1)) },

{0.0.0.1}}

The function GravPotChn returns the potential energy function:

3Cos[sl]/2+43 (Cos[e]lCos[sl]
-Sinle]Sin[sl]) /2
+0.35(Cos[t2] (- (Cos[sl]Sin[e]l)
-Cos([elSin[sl])Sin(tl]
+(CoslelCos[sl]-Sin[e]lSin(sl])
(Cos[tl]Cos[t3]+Sin({tl]1Sin[{t2]1Sin[t3]))

The dynamical equations for this system are extremely complex
and lengthy. Because of this we will not exhibit them here. Once
again, however, a significant simplification is obtained by replacing
the compound joints (joints 1 and 3) with their corresponding simple

2, APRIL 1995
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joint representations. This is accomplished by redefining r1, r2, by
rl = {2} and r3 = {3} in the above Mathematica program. As
a measure of the reduction achieved we note that the inertia matrix
so obtained is only about 25% as large as the compound case in
terms of the length of the total mathematical expression. As an
illustration we list only the last (6th) row of the inertia matrix for
each case.

Last row of inertia matrix, compound joint representation
{1.05Cos[%] cos[t1])Cos[t2]Sin[s2)
+0.0969792Cos [e+s1])

Cos[tl]Cos[t2]1Sin([s2]
+0.00510417Cos(t2])Sin[e+sl]

Sin[s2]1Sin{tl]

-0.0969792Cos[s2]18Sin([t2]
—1.05Cos[r + %}Cos[%]Cos[sZ]Sin[tN ,
-0.175Cos[t1]Cos[t2] (6Cos[%]

Cos[s2]Sin(sl]
+38in{2s1]/2)
+0.0969792Cos [tl]Cos[t2]

- (- (Cosfe+sl]Cos[s2]S8in(sl])
-Cos[sl]Sinle+sl])
+0.00510417Cos[t2] (Cos[sl]Cos[e+sl]
-Cos{s2]Sin[sl]Sin[e+sl])Sin[tl]
-0.09697928in(s1]Sin[s2])Sin(t2]
-1.05Cos[c + 2]cos[%]

Sin[sl]Sin[s2]Sin([t2],
-0.09697928in(t2]-0.525Cos[e]Sin[t2],
-0.0969792Sin(t2],
-0.091875Cos{tl]Cos(t2]1Sin(tl],

0.0969792Cos[t1]°Cos(t2]%+

0.00510417Cos[t2]1%Sin(t11%+0.0969792

Ssin[t21%}

Last row of inertia matrix, simple joint representation
{1.05c0s[2]*sin[s2]
+0.0969792Cos[e+s1]1Sin[s2],
-0.5258in({s1]-0.0969792Sin[e+sl],

0,0,0,0.0969792}

V. CONCLUSION

In this paper, we have presented new algorithms for constructing
models of joint kinematics and show how these algorithms can be
used for deriving dynamical models for rigid multi-body chains in the
form of Poincaré’s equations. Computer software has been described
which implements these constructions in the symbolic manipulation
language Mathematica.

The joint representations are general in that they accommodate a
large class of joints, and flexible in that the modeler has some freedom
in setting up the physical meaning of joint coordinates when dealing
with multi-degree of freedom joints. The computations themselves
are recursive and efficient—by which we mean that the execution
times are reasonable and that they produce recognizable and compact
expressions when applied to standard joints.

Many multi-degree of freedom joints are physically realized as
a sequence of one degree of freedom joints—a subclass of what
we call compound joints. When joints are modeled in this way
Poincaré’s equations are Lagrange’s equations. Any compound joint
is (locally) kinematically equivalent to a simple joint and in the
sense that both joint descriptions induce the same parameteriza-
tion of the configuration matrix. We show that when a compound
joint is represented by its equivalent simple joint, the resulting
Poincaré’s equations can be much less complex than Lagrange’s
equation. This is simply a result of the well known fact that

such a simplification generally accompanies the use of quasiveloc-
ities.

The principle contributions of the paper are new algorithms for
constructing joint representations and their application to the com-
puter derivation of the equations of motion. These computations
are not merely of theoretical interest. They form the basis of a
comprehensive software package for modeling multibody systems
with tree-like structure and composed of rigid and flexible links [20].
Using a Maclntosh Quadra and 486 PC, systems of modest scale
have been investigated. That includes: derivation of the equations
of motion, generation of ("-code, compilation and simulation. The
largest system considered to date is a 15 degree of freedom tracked
vehicle with 10 road wheels and a flexible hull, as reported in [20].
Current work focuses on integrating this modeling tool with nonlinear
control design software described in [1].
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